Changes in NRF2 Gene After Menopause Linked to Oxidative Stress, Risk for Obesity, Mouse Study Suggests

Changes in NRF2 Gene After Menopause Linked to Oxidative Stress, Risk for Obesity, Mouse Study Suggests
0
(0)

Alterations in the gene coding for the NRF2 protein after menopause may lead to a defective response to oxidative stress — an imbalance between the production of harmful free radicals and the body’s antioxidant defenses — and higher blood levels of glucose, while also increasing the risk for obesity, a study in mice suggests.

The study, “NRF2 deficiency increases obesity susceptibility in a mouse menopausal model,” was published in the journal PLOS One.

Women in menopause have an increased risk of abnormal changes in their metabolism due to the lower levels of estrogen hormone produced in the ovaries.

Evidence suggests that the amount of low-density lipoprotein (LDL), also known as the “bad” cholesterol, increases in menopause. In addition, aging and menopause are risk factors for higher body mass index (BMI), a measure of body fat, and diseases such as type 2 diabetes, which are more prevalent among women after the end of their menstrual cycles.

Inflammatory proteins associated with obesity are known to promote oxidative stress, which can cause damage to cellular components.

The NRF2 protein is an important oxidative stress sensor that plays a key role in defending against an increase in free radicals. Yet, its role in obesity remains controversial. While some studies suggest that this protein promotes energy metabolism and insulin resistance, others suggest that lacking NRF2 may promote the formation of fat cells, known as adipogenesis.

To learn more, researchers in China investigated the role of the NRF2 gene in metabolism after menopause.

First, the scientists induced menopause in healthy female mice and in mice lacking the Nrf2 gene by surgically removing the ovaries, called ovariectomy. As controls, the team used mice that did not undergo this surgery.

Ovariectomy led to a significant decrease in estrogen levels in those mice, compared with controls, regardless of whether or not the animals had the Nrf2 gene, the researchers confirmed.

Next, they measured the blood levels of malondialdehyde (MDA) — a biomarker of oxidative stress. The results showed that, compared with control animals, MDA levels increased in ovariectomized mice with normal Nrf2, and in animals without this gene but with intact ovaries.

Body weight monitoring showed that ovariectomy was associated with significant weight gain at four weeks post-surgery compared with control mice. In addition, the researchers found that ovariectomized mice lacking Nrf2 experienced the greatest weight increase.

Blood levels of glucose (sugar) were significantly elevated at weeks three and five post-surgery in ovariectomized mice lacking Nrf2 compared with animals also lacking this gene but with intact ovaries.

Regarding cholesterol, the mice missing Nrf2 had higher LDL levels compared with controls. Similar to menopausal women, ovariectomized mice also had increased LDL levels. In contrast, LDL levels in ovariectomized mice without NRF2 were markedly reduced after surgery.

Since menopause also can impact mental health, the investigators additionally assessed changes in neurotransmitters — molecules produced in response to nerve signals that act as chemical messengers.

They found that levels of serotonin (5-HT), a neurotransmitter that suppresses nerve signals, decreased after ovariectomy in mice lacking Nrf2 compared with those that did not undergo surgery and also lacked this gene. Missing Nrf2 was associated with lower serotonin levels than in animals with this gene.

Overall, these results suggest that “Nrf2 deletion is a genetic factor that causes susceptibility to menopausal female obesity and its induction mechanism is possibly different from a simple decline in estrogen level,” the researchers said.

“The mechanism may be different from weight gain caused by a simple decline in estrogen level but may be associated with the altered glucose and LDL metabolism regulation and decreased 5-HT levels,” they added.

Patricia holds her Ph.D. in Cell Biology from University Nova de Lisboa, and has served as an author on several research projects and fellowships, as well as major grant applications for European Agencies. She also served as a PhD student research assistant in the Laboratory of Doctor David A. Fidock, Department of Microbiology & Immunology, Columbia University, New York.
Total Posts: 9
José is a science news writer with a PhD in Neuroscience from Universidade of Porto, in Portugal. He has also studied Biochemistry at Universidade do Porto and was a postdoctoral associate at Weill Cornell Medicine, in New York, and at The University of Western Ontario in London, Ontario, Canada. His work has ranged from the association of central cardiovascular and pain control to the neurobiological basis of hypertension, and the molecular pathways driving Alzheimer’s disease.
×
Patricia holds her Ph.D. in Cell Biology from University Nova de Lisboa, and has served as an author on several research projects and fellowships, as well as major grant applications for European Agencies. She also served as a PhD student research assistant in the Laboratory of Doctor David A. Fidock, Department of Microbiology & Immunology, Columbia University, New York.
Latest Posts
  • NRF2
  • soybean oil
  • impulsive behavior

How useful was this post?

Click on a star to rate it!

Average rating 0 / 5. Vote count: 0

No votes so far! Be the first to rate this post.

As you found this post useful...

Follow us on social media!

We are sorry that this post was not useful for you!

Let us improve this post!

Tell us how we can improve this post?